PROJECT DESCRIPTION and ENVIRONMENTAL ASSESSMENT

by

U.S. GEOLOGICAL SURVEY Earthquakes Hazards Team

May 4, 2010

Title:

Salton Seismic-Imaging Project (SSIP): A Survey to Evaluate Earthquake Hazards and Structure of the Earth's Crust in Imperial and Coachella Valleys

Located in:

Salton Trough: Coachella and Imperial Valleys (Riverside, Imperial, San Bernardino and San Diego Counties, California, and Yuma County, Arizona)

Prepared by:

United States Geological Survey 345 Middlefield Rd. Menlo Park, CA 94025

Gary Fuis (650) 329-4758 Robert Sickler (650) 329-4827 Michael Rymer (650) 329-5649 Janice Murphy (650) 329-5451

SECTION I: PROPOSED ACTION	3
A. Purposes and Need	3
B. Plate-Tectonic and Earthquake Setting of the Salton Trough	4
C. Previous work	
D. Location of Proposed Action	6
E. General Description of Proposed Action	
F. Frequently Asked Questions	
SECTION II: ALTERNATIVES	
SECTION III: AFFECTED ENVIRONMENT	
A. Topography	
B. Climate	
C. Air Quality	
D. Geology	
E. Soil Quality	
F. Water Quality	
G. Vegetation/Wildlife	17
H. Archaeological Resources.	
I. Traffic Control	
SECTION IV: MITIGATION MEASURES	17
SECTION V: CALENDAR	
Figure 1	19
Figure 2	
Figure 3	
Figure 4	
APPENDIX I - Minimum Setback-Distance Tables	
APPENDIX II - Chemical Effects of Seismic Detonations on the Environment	

SECTION I: PROPOSED ACTION

A. Purposes and Need

The U.S. Geologic Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech) will conduct a seismic-imaging survey of the Salton Trough as part of the National Earthquake Hazards Reduction Program and the National Science Foundation's EarthScope and MARGINS programs. The "Salton Trough" includes the Coachella and Imperial Valleys. Our survey will address the following goals of these programs:

- 1) To acquire data needed for the prediction of strong ground shaking during future large earthquakes. Factors that contribute significantly to strong ground shaking are a) the thickness and seismic velocity of sedimentary deposits, b) the shape of the basins containing the sedimentary deposits, and c) the location and shape of the rupturing fault. Shaking is stronger for greater thickness and for lower seismic velocities in sedimentary deposits. ("Seismic velocity" is the speed at which seismic waves travel through a given material.) Basin shape determines how efficiently earthquake energy is trapped in the sediments. The location and shape of a fault determines from what origin point(s) and in what directions energy is radiated during earthquake rupture. Information on ground shaking can be used in designing buildings to make them safer.
- 2) <u>To better locate *earthquakes*.</u> Our survey will better calibrate the permanent Southern California seismographic network, permitting us to more accurately locate earthquakes. More accurate earthquake locations lead to clearer images of faults.
- 3) To understand the causes of and the nature of rifting and *subsidence* in the Salton Trough. In the Gulf of California region to the south, Baja California has rifted completely away from mainland Mexico. In the Salton Trough, this process is in its early stages. Our survey will investigate the way in which a continent is rifted.

In particular, the region of the northern Imperial Valley and Salton Sea is subsiding. Extensional faults have been discovered beneath the southern part of the Salton Sea in preliminary surveys (by colleagues at the University of California at San Diego). Our land survey will be combined with a survey of the Salton Sea itself to understand where these extensional faults root, what triggers movement on them, and what subsidence rate are they producing.

4) To elucidate the geologic structure beneath the Salton Trough so that we can better understand the processes by which earthquakes are generated. This goal includes determining the type and distribution of various rock layers in the subsurface and identifying and determining the shape of active faults (see #1 above).

5) To communicate earthquake hazards information and information on how the Earth works to the public. The ShakeOut Earthquake Scenario, of November 13, 2008 (http://pubs.usgs.gov/circ/1324/), was an example of how earthquake hazards can be communicated to the public for the purposes of reducing potential losses. In this scenario, a M 7.8 earthquake was assumed to result from a rupture of the southern segment San Andreas fault, from its origin on the east side of the Salton Sea, through the Coachella Valley, and northward. An actual prehistoric rupture on this segment of the fault is documented in trenches across the fault: it occurred 320 years ago, around 1685 A.D. Ruptures prior to that event have an average inter-event interval of 225 years, suggesting that this segment of the San Andreas fault is near failure. Hence, the motivation for the ShakeOut and for our seismic-imaging survey.

A repeat of the earthquake of 1685 A.D. will be the greatest natural disaster this nation will face in the foreseeable future, and we must continue to focus on mitigating the damage that it will produce.

B. Plate-Tectonic and Earthquake Setting of the Salton Trough

Southern California straddles two of the Earth's plates that move past each other, the Pacific and North American plates (Fig. 1). The Pacific plate is moving relatively to the northwest and consists of the region southwest of the San Andreas fault and southwest of the Gulf of California. (This large plate extends all the way to Japan). The North American plate is moving relatively to the southeast and consists of the region that is northeast of the San Andreas fault and northeast of the Gulf of California. (This large plate extends eastward to the center of the Atlantic Ocean). The boundary between the two plates is quite crooked and includes places where there are steps to the right, such as in the Gulf of California and Salton Trough, and at least one place where there is a big bend to the left, in the Transverse Ranges of southern California. Where the plate boundary is oriented in the direction of motion between the plates, the plates slide past one another without colliding or pulling away from one another. Where the plate boundary steps to the right, holes (rifts) in the Earth's crust occur, and when the boundary bends to the left, pile-ups (mountains) are generated (See Fig. 1). The Gulf of California and its onshore extension, the Salton Trough (which includes Mexicali, Imperial, and Coachella Valleys), are located over a series of rifts in the Earth's crust, which are filling with sediment from above, chiefly from the Colorado River, and magmatic material from below. The Cerro Prieto geothermal field in Mexico and the Brawley Seismic zone in the U.S. are located above two of these rifts, and young volcanoes in these locations are evidence of intrusion of magma from below. These two regions are linked by a plate-boundary segment known as the Imperial fault. The Cerro Prieto rift is linked by the Cerro Prieto fault to the next rift south in the Gulf of California, and the Brawley Seismic Zone is linked by the San Andreas fault to a junction of three plates at Cape Mendocino, California (well beyond the north end of Fig. 1). In addition to the plate-boundary faults, there are faults on either side that take up some of the motion between the North American and Pacific plates, including the Elsinore and San Jacinto faults and faults in the Mojave Desert (see below).

Generally, large earthquakes (M as large as 8) occur along the plate-boundary faults, and swarms of smaller earthquakes (M as large as 6) occur in the rifts. Since earthquake recording began in ~1933, four large earthquakes have occurred on the San Andreas and Imperial faults (Fig. 1), and many swarms of earthquakes have occurred in the Cerro Prieto geothermal area and Brawley Seismic zone. In prehistoric times, major earthquakes (M~8) have occurred on the San Andreas fault. Evidence for fault ruptures that accompanied these ancient earthquakes are revealed in trenches across the San Andreas fault. As discussed above in Goal #5, the last major earthquake on the southern segment of the San Andreas fault occurred around 1685 A.D. Unfortunately, earthquake ruptures that occurred at even earlier times have inter-event time intervals that average 225 years. Thus, the San Andreas fault is capable of generating a very large earthquake at any time.

C. Previous work

In 1979, the USGS conducted a seismic-imaging survey in the Imperial Valley to investigate the various rock layers that make up the Earth's crust in this region and also the faults that offset these various layers. This survey was quite modest by today's standards, with only seven shotpoints and 100 seismographs (see below for a description of shotpoints and seismographs for this project), but nevertheless, some surprising discoveries were made. These discoveries include the fact that the central part of the Imperial Valley contains no old rocks, only new crust consisting of young sedimentary deposits and a large body of solidified intrusive rocks that lie below the sediments (Fig. 2). We obtained some information on the shape of the Imperial and San Jacinto faults, but little information on the San Andreas fault, which is located on the edge of the survey. The 1979 data set was augmented by a couple of low-resolution profiles recorded in 1992. In constrast to the 1979 and 1992 surveys, the proposed Salton Seismic-Imaging Project (SSIP) will employ 170 shotpoints and 3000 seismographs.

In 1994 and 1999, the USGS and the Southern California Earthquake Center (SCEC) conducted surveys, known as the Los Angeles Region Seismic Experiment (LARSE), which are similar to SSIP (see USGS Fact Sheets 110-99 and 111-99; http://pubs.usgs.gov/fs/1999/fs110-99/; http://pubs.usgs.gov/fs/1999/fs111-99/fs111-99.pdf). The LARSE surveys consisted chiefly of two medium-resolution profiles through the Los Angeles metropolitan area and the mountains to the north (Transverse Ranges). Major discoveries about the San Andreas fault and the "blind thrust faults" beneath the Los Angeles metropolitan area were made with data from these surveys. These "blind thrust faults" have primarily vertical movement, do not reach the Earth's surface, and have given rise to 4 of the largest earthquakes in the last 40 years, including the M 6.7 San Fernando and Northridge earthquakes and the M 5.8-5.9 Whittier Narrows and Sierra Madre earthquakes. The LARSE surveys documented the existence of these faults, as well as, the depths, shapes, and seismic-velocity distributions of the Los Angeles, San Gabriel, San Fernando, and Santa Clarita sedimentary basins. Thus, providing model constraints so that the earthquake shaking potentials of these basins can be better estimated.

The Salton Seismic-Imaging Project (SSIP) is designed in a fashion similar to the LARSE surveys, although the cumulative line length is longer. *The LARSE surveys*

demonstrated that the USGS and collaborators can safely and effectively conduct seismic-imaging surveys in urban, suburban, and remote areas, on lands with many different owners or managers. They produced information that could not have been obtained any other way and that has changed key ideas on how earthquake-producing "machinery" works in southern California. These surveys had no significant environmental impact.

D. Location of Proposed Action

Generally, our Salton Seismic-Imaging Survey is laid out as a series of intersecting lines that will allow us to get an approximate 3-D image of the subsurface in chiefly the Coachella and Imperial Valleys (Fig. 3). The survey includes an axial line that begins at the southwest tip of Arizona and extends northwestward through the Mexicali, Imperial, and Coachella Valleys to a point north of Palm Springs, California. Cross lines are laid out in northeasterly directions straddling the San Andreas and Imperial faults, which are both located within the valleys. These lines extend beyond the edges of the valleys so that we may image the full shapes of the sedimentary basins underlying the valleys. The following is a brief description of the need for each line.

Line 1 is composed of segments 1S, 1M (marine), 1N (Fig. 3). 1S is the part of the line from San Luis, AZ, that extends northwestward across a corner of Mexico, back into the U.S. east of El Centro, CA, and northwestward to the Salton Sea. 1N begins on the north shore of the Salton Sea and extends to the northwest end of the Coachella Valley. 1M is a marine component, in the Salton Sea, and connects 1S and 1N. This axial line is intended to image the deepest parts of the sedimentary basins in the Salton Trough (estimated to reach depths as great as 6 km). Shaking severity from earthquakes increases with basin depth; therefore knowing the basin depth and its variations are important for evaluating the earthquake hazard. This long line will also allow us to investigate the composition of the crust and underlying mantle and provide an answer to the question: at what point northwestward in the Salton Trough, do magmatic contributions to the crust cease? Currently, the northernmost surface manifestation of magmatic intrusions are the (active) Salton Butte volcanoes at the southeast end of the Salton Sea.

Line 2 extends from a point on the international border east of San Diego, CA, northeastward to the Colorado River south of Blythe, CA (Fig. 3). This line crosses the Peninsular Ranges, Imperial Valley, and Chocolate Mountains. The line is intended to extend the image of the sedimentary basin obtained on line 1S to the east and west for a better image of the shape of the Imperial Valley and, hence, to better evaluate earthquake shaking hazard within the Valley. This line will also image the shape (dip) of the plate-boundary fault, the Imperial fault, so that earthquake energy radiation from this fault can be better estimated. This fault has generated 2 large earthquakes in the last 70 years, the 1940 M 6.9 and 1979 M 6.4 earthquakes. Active faults in the Peninsular Ranges, the Elsinore and San Jacinto faults, which generate moderate earthquakes will also be imaged. In addition, this line is intended to image the older rocks on either side of the Imperial Valley and the boundaries between these rocks and the new crust that is forming within the Imperial Valley. We hope to image differences in lower

crust/mantle beneath the Imperial Valley and the flanking ranges, in order to discover where new magmatic additions to the crust are being generated. *Subsidence is occurring in the Mesquite basin, between Brawley and El Centro. Line 2 will investigate the origin of this subsidence.*

Line 3 extends from Line 2 on the west side of the Imperial Valley northeastward through the Salton Buttes volcanoes, along the south shore of the Salton Sea, and into the Chocolate Mountains (Fig. 3). This line crosses one of the rifts in the Salton Trough, the Brawley Seismic zone, where magmatic intrusions into the crust are active. In addition to addressing sedimentary basin depth, this line is intended to investigate the quantity and shapes of magmatic material that have been added to the upper part of the crust and also the sizes and locations of active magma chambers below the volcanoes. Our investigations will be of general use to the geothermal industry in this area. In addition, this line will investigate branches of the San Jacinto fault known as the Superstition Hills and Superstition Mountain faults. The Superstition Hills fault ruptured in a M 6.6 earthquake in 1987.

Observed subsidence in the northern Imperial Valley and Salton Sea areas will be investigated with our survey and a companion seismic survey in the Salton Sea itself (conducted by colleagues at University of California at San Diego—Line 1M). Faults involved in this subsidence have been imaged beneath the southern Salton Sea in preliminary surveys, and our combined imaging surveys will be aimed at understanding these faults, including where they are rooted, what triggers offset on them, and what is the rate of offset (and subsidence) on them.

Lines 4, 5, and 6 are intended, like lines 2 and 3, to extend our knowledge of sedimentary basin thickness (and hence earthquake shaking severity) in as many locations as feasible in the Coachella Valley (Fig. 3). Rapid urban and suburban growth in the Coachella Valley requires rapid evaluation of earthquake shaking hazard. The location of Line 4 was chosen so we could straddle the San Andreas fault, obtaining an image of not only the sedimentary basins on either side of the fault but also of the fault itself (and its dip). Microseismicity suggests the fault dips moderately northeastward here, and it is important to confirm (or reject) this possibility because of its implications for energy radiation during a major earthquake. Line 5 will address the sedimentary basin depth beneath Palm Desert, CA, one of the large suburban cities of the Coachella Valley, and Line 6 will address the basin depth in the vicinity of Palm Springs, the largest urban area in the Coachella Valley. Line 5 is located to take advantage of access southeastward into the Peninsular Ranges along Hwy 74, and Line 6 is located to take advantage of access through the Little San Bernardino Mts along "Kickapoo trail" (a dirt road from Desert Hot Springs to Yucca Valley; see below). Line 6 will image the San Andreas fault where it has split into three branches, the Garnet Hill, Banning, and Mission Creek faults. The M 6+ earthquakes of 1948 (Desert Hot Springs) and 1986 (North Palm Springs) appear to have occurred on the Banning branch which dips moderately northward, and again, it is important to investigate the structure of the fault zone here (northward dips) for earthquake hazard evaluation. Lines 5 and 6 terminate near the ruptures of the 1991 M 6.1 Joshua Tree and 1992 M 7.3 Landers earthquakes, respectively.

Line 7 is a 9-km- long profile that crosses the San Andreas fault at Salt Creek, on the northeast shore of the Salton Sea, where microseismic evidence indicates that the San Andreas fault dips moderately (57-59 deg) northeastward. This is the best location to obtain a crisp image of the fault and to confirm (or reject) the northeastward dip. It is important to obtain independent seismic-imaging data for this stretch of the San Andreas fault for earthquake hazard evaluation.

E. General Description of Proposed Action

Imaging Method

The seismic images we seek to obtain in the Salton Trough are of two types, "refraction" and "reflection" images and are analogous to *CAT scan and sonogram* images, respectively, in the medical industry. Both of the seismic image types utilize seismic energy generated at or near the surface. In seismic-refraction imaging, the energy travels laterally through rocks, and one maps out distributions of fast and slow rocks, much as medical CAT scan images map out regions of the human body that are transparent or opaque to X-rays. In seismic-reflection imaging, the energy travels approximately vertically downward and reflects (or echo) off rock interfaces, returning to the surface to be recorded on seismographs, much as medical sonogram (ultrasound) images are generated by reflections off of fluid and tissue interfaces within the human body.

Our seismic images extend to varying depths, depending on the depths of our targets. Targets include a) bottoms of sedimentary basins (10's of meters to 6 km), b) initiation depths of large earthquakes (10-15 km), c) magma chambers (a few km to 10's of km), and d) the base of the crust (20-40 km). Sources for seismic images include manmade sources, such as vibrator trucks and detonations of deeply buried seismic charges, and natural sources such as earthquakes. For the type of images we propose, detonation of buried seismic charges iis required for the following reasons:

- 1) Vibrator-truck sources, such as used by the oil industry for exploration, produce only very shallow refraction images (1 to 2 km deep), and, generally reflection images extend no deeper than 10- to 15-km depth. In addition, because of the relatively weak signals they produce, the trucks must vibrate at many points (essentially continuously) along the profile, and long vibration times are required. The extensive footprint of shaking disturbance required for this type of imaging makes it impracticable in most suburban and urban settings.
- 2) Natural earthquake sources are inadequate by themselves. Earthquakes are irregular in distribution and uncertain in location. The "image" one gets using earthquake sources alone is too fuzzy and inaccurate to be of use for earthquake hazards evaluation.
- 3) Detonation of seismic charges, on the other hand, can produce both refraction and reflection images to the required depths. Seismic charges can be detonated in boreholes in open spaces within subsurban and urban settings, such as parks, golf courses, construction sites, farmlands, dumps, and other places where they can be set back sufficiently from residential and other structures. Our LARSE surveys in the 1990's (see

above) utilized all such types of open spaces along a total of more than 300 km of profile, including many kilometers in suburban and urban settings.

In summary, there is no way other than detonation of buried seismic charges to obtain reliable detailed images of the subsurface that we need for earthquake hazards mitigation. Using this kind of methodology through suburban Los Angeles and the adjacent mountain ranges in the 1990's produced a new, unexpected picture of how the "earthquake-producing machinery" works beneath that region. That survey had no significant environmental impact.

Seismic detonations

Our project plans to detonate nearly 170 buried seismic charges, or "shots," with the charge size ranging from approximately 5 to 3000 lbs. In the agricultural areas and in cities, the shot size is at the small end of this range. The shots are arranged along the lines at spacings ranging from 0.5 to 25 km or more. Most of these shots are detonated in 6-inch, fully cased drill holes **below** a depth of 60-70 feet (see Fig. 4a for diagram). The total depth of each drill hole varies with charge size. The charge is a commercial ammonium-nitrate-based product that is pumped into the drill holes. The charge is buried or covered with 60-70 feet of "tamp" that includes bentonite sealant and drill cuttings or gravel. The charge is inert until it is "primed" just minutes prior to detonation on the night of the shot. The charge is primed by attaching an electrical blasting cap to detonating cord that extends through the tamp to the surface. Seismic charges are detonated at night, when wind and cultural noise are at their lowest levels at our seismograph sites. For more detail on drilling and loading shotholes, please visit to http://geopubs.wr.usgs.gov/open-file/of01-408/ and view the section on "Shotpoints and Shot Size Determination". Also see Appendix I.

An important element in assuring that our seismic detonations do not cause damage to structures or undue alarm to residents is determining proper set-back distances for structures and residences. We have developed tables for such set-back distances (Appendix I). Two tables have been prepared, both of which fit equally well seismic-amplitude data from prior surveys but differ in details. We use both of these tables and average the recommended set-backs. We determine the final amount of charge to load in shotholes after the hole is drilled and after we have information on the type of material encountered. For a detailed explanation of set-back determination, please visit the website and section cited above.

Seismographs

The seismic detonations will be recorded by approximately 3000 seismographs spaced 100 meters (~330 feet) to 200 meters apart. The great majority of seismographs are slightly larger than a soda can with a sensor (2x2 inch cylinder with a spike for firm attachment to the ground) attached by a short cable (few feet)(see Fig. 4b). Generally, the entire seismograph system can be installed in a shallow hole that is the width and

depth of a normal shovel blade. Thus the seismograph system is completely buried to avoid wind noise, vandalism, and visual impact.

Schedule

Drilling for shotholes would take place during a period of a few months prior to the survey. The holes are drilled and cased by a contract water-well drilling rig. After completion of drilling at each site, the casing, which protrudes approximately 6 inches above the surface is capped and locked and covered with a small pile of dirt to reduce its visibility. During a period of a week or so prior to detonation, a contract truck carrying "blasting agent" (which has the texture of toothpaste) visits each site and pumps the required amount of blasting agent into the hole. Just prior to pumping the blasting agent, a detonating cord with attached booster charges is lowered into the hole and secured in the interval to be filled with blasting agent. Hole loading is completed by pouring bentonite sealer on top of the blasting agent, followed by gravel and (or) hole cuttings. The detonating cord is tied to the locking cap at the surface and the hole is reburied with a small pile of dirt (Fig. 4a). After the seismographs have been deployed, the charges are detonated one after another, at night (to avoid wind and cultural noise). Shooting 170 shotpoints will require approximately 2 weeks of actual shooting. A period of a few days is scheduled in the middle of the shooting sequence to redeploy the seismographs.

Shothole cleanup involves excavating the casing to a depth of at least 2 feet below the surface, cutting the casing at that point, attaching a water-tight cap on top, filling the hole, and recontouring the ground surface to its original shape. Cleanup will occur during the month following detonation

Our calendar schedule has shifted from our original schedule (wherein we would have acquired the data in the Winter or Spring of 2010); the shift resulted from the lengthy process of permitting federal lands. Currently, our schedule is the following:

Shothole drilling—Aug. 2010-Mar 2011 Shothole loading—Jan-Mar 2011 Seismograph deployment—Feb-Mar 2011 Shooting—Feb-Mar 2011 Cleanup—late Mar 2011

Note that drilling will likely continue during shooting and recording. Our experience indicates that some permits are not obtained until quite late.

F. Frequently Asked Questions

The chief environmental concerns that are usually expressed about our surveys are as follows:

- 1) Will the shots trigger earthquakes?
- 2) Will the shots damage water supplies?
- 3) Will the shots damage man-made structures?
- 4) How far can the shots be felt?
- 5) What do the shots sound like?
- 6) Will the shots damage the landscape, archaeological resources, or endangered species of plants or animals?
- 7) Will activities generate dust?
- 8) Will roads be closed during your operations?

Answers to these questions are as follows. See also APPENDICES I and II.

1) Will the shots trigger earthquakes? Our shots will not trigger earthquakes. We have been performing this type of survey for more than 40 years, all over the world, in many different types of actively faulted areas, and with shots larger than those proposed for this project, and we have never triggered an earthquake. Our shots are similar in size to freeway-construction or mine blasts and pose no greater hazard to triggering of earthquakes than do those blasts. Furthermore, we detonate our charges near the Earth's surface, whereas the region where large earthquakes originate is generally 6 or more miles deep. Our signals are very weak by the time they reach that region. Finally, our largest shots will have a size equivalent to an M 2-2.5 earthquake. The Southern California region is shaken by an average of four M 2.5 earthquakes daily, and similar magnitudes are generated by mine and quarry blasts that occur nearly every workday of the year. We have examined 17,000 mine and quarry in southern California and have determined that none have triggered earthquakes. Thus, the hazard of our operation is not significant.

To our knowledge, the only events that DO trigger earthquakes are major earthquakes, like the M 7.3 Landers earthquake of June 1992. This event triggered a M 5.2 earthquake in southern Nevada and numerous smaller earthquakes at several volcanic areas in the western U.S., including Mammoth Lakes, CA, the Geysers, CA, and Yellowstone National Park. The Landers earthquake represents 10's of millions times the energy in our shots.

2) <u>Will the shots damage water supplies?</u> Our shots will not harm water supplies. We have performed water-quality tests before and after shots that were detonated directly in water to determine if there were any residual nitrate, nitrite, ammonia, or pH changes. The results were negative (Appendix II). The seismic charge is completely consumed during detonation.

In our 30 years of experience, we have never damaged a spring or well, although we have shot within a few hundred feet of springs and wells. Except for cases where a seismic charge is detonated directly in a spring or well, the only events that affect springs and wells are major earthquakes. (Major earthquakes apparently increase

upper-crustal porosity, by shaking and opening cracks, and cause water tables to be lowered as the water drains downward.)

3) Will the shots damage man-made structures? Our shots will not damage man-made structures. In siting our shotpoints, we use tables of ground velocity that we have established from years of shooting experience in order to ensure that we are below the lowest damage threshold for built structures (2 in/sec; Appendix I). That is not to say that our shots may not be felt (see 4 below).

Our shotpoints will not damage irrigation infrastructure in the agricultural areas. We have detonated test charges at varying distances (20-50 ft) from buried clay drain tiles (which we exposed for the tests), and there was no damage from these charges. (In fact, there was no ground disturbance at all; see Mitigation Measures below). These tests were observed by an engineer from the Imperial Irrigation District.

- 4) How far can the shots be felt? Most shots can be felt only within a few hundred feet of the shotpoint. The larger shots can be felt for a 1000 feet or possibly more. We have made an effort to keep the shotpoints well away from houses in order not to disturb people at night. Unfortunately, a few people may feel the shots. Prior to our LARSE surveys we communicated the purposes and effects of our activities to the public by way of city council meetings, radio, newspaper, and TV.
- 5) What do the shots sound like? The shots usually sound like a dull "thud." Occasionally, when steam is vented, a hiss will occur for a period of seconds following the shot.
- 6) Will the shots damage the landscape, archaeological resources, or endangered species of plants or animals? Areas chosen for shotpoints are, to the extent possible, areas that have been affected by grading, dumping, or storage, such as road pull-outs, abandoned roads, dumps, and equipment or hay storage lots. There are almost never archaeological resources near the shotpoints nor endangered species of plants and animals. If archaeological resources or endangered species of plants or animals are found within the footprints of the drilling operations, then the shotpoints are moved. The drilling operations affect an area approximately 50 by 50 feet. We leave each site in a condition as close to its original condition as possible. At perhaps 10% of our shots, there may be ground disturbance, including upward movement of casing or a small collapse crater around the shot hole, generally less than a few feet in size. If disturbance does occur, it develops immediately after the shots in almost all cases. We excavate the casing to at least 2 feet below the surface, cap it, and bury it. We fill in any craters with imported fill and recontour the ground surface to as nearly its original condition as possible. In a small percentage of our shots at bedrock sites (outside of the Imperial and Coachella Valleys), flyrock may be generated within about 100-200 ft or so of the shotpoint. This debri is cleaned up as necessary. The drilling and shooting operations at sites that are hand augered have a minimal footprint of only a few square feet. shots in these hand-augered holes rarely affect the surface.
- 7) <u>Will your activities generate dust?</u> Our activities do not generate significant dust. Drilling is done with water, and dust is not generated. The shots are contained underground, and detonation does not generate dust. In the cases where venting occurs during a shot, steam (not dust) is vented.

8) Will roads be closed during your operations? Several shotpoints will be within 500 feet of paved roads, including Highway 74 (Peninsular Ranges), Thousand Palms Canyon Road (Indio Hills), and Highway 195 (Mecca Hills). For safety, we will need to request and carryout temporary closures during shot detonations.

SECTION II: ALTERNATIVES

Alternatives to the survey, as proposed, include the following:

- 1) Move the lines
- 2) Move shotpoints within the lines
- 3) Eliminate the study (No Action Alternative),
- 4) Eliminate certain shotpoints
- 5) Use vibrator trucks instead of seismic detonations,
- 6) Use earthquakes instead of seismic detonations.

The consequences of each of these alternatives are as follows:

- 1) The reasons for locating the lines as shown (Fig. 3) are as follows:
- a) Line 1. This line (consisting of segments, 1S, 1M, and 1N) is designed to image the sedimentary basins along the axis of the Salton Trough at points where they are inferred to be deepest from prior seismic work (1979 and 1992) and prior gravity studies. This line will also address the boundary between new and old crust, and it will address possible crustal thickness changes from south to north. The southern end of line 1S is fixed at the SW corner of Arizona for political and logistic reasons. (It is very difficult to detonate seismic charges in Mexico.) The position of line 1S at the international border with California is motivated by a need to tie the new survey to the 1979 and 1992 surveys, which shared a shotpoint at the location shown (at the border). Moving Line 1 would eliminate imaging the deepest parts of the sedimentary basins in the Salton Trough and would prevent us from tying the new data set as confidently as possible to the older ones.
- b) Line 2. This line is designed to image the deep structure of the Salton Trough and the mountains on either side. Primary imaging targets are 1) the (buried) boundaries between the old crust in the mountains on either side of the trough and the new crust within the trough, 2) the Imperial fault (the plate boundary fault), 3) the large body of solidified intrusive rocks in the middle and lower crust of the trough, and 4) the base of the crust (how thick is the crust?) in the trough and on either side (see Fig. 2). The eastern third of line 2, through the eastern part of the Salton Trough and Chocolate Mts, is determined by road access. Hwy 78 is the only driveable access through East Mesa and the Algodones dunes for 10's of km on either side. This route threads its way between the Chocolate Mts. Bombing and Gunnery Range on the north and a Naval Bombing Reservation on the south. The western third of Line 2, through the Peninsular Ranges, is also to some extent determined by road access. The line needs to be near road access through the rugged Jacumba Mts and to remain north of the international border for political and logistical reasons. For scientific reasons, the line needs to be as straight as possible, in order to be able to interpret the data, and this requirements fixes the central third of the line, through the Imperial Valley, given the constraints on the eastern and western thirds. This line could possibly be moved to the international border, along the border road that is being built. However, a line along the international border would not cross the Imperial fault, one of the chief imaging targets, in a perpendicular fashion, as is required for data interpretation.

- c) Line 3. This line is designed to image the Salton Buttes volcanoes and possible magma chambers beneath them and therefore cannot be moved away from them and still address these targets. Line 3 also addresses subsidence that is apparent in the northern Imperial Valley.
- d) Line 4. This line is designed to image the base of the sedimentary basin underlying the southernmost part of the Coachella Valley and to image the San Andreas fault. This line is constrained by road access to lie along Hwy 195 through Box Canyon, in the Mecca Hills, as there is no other crossing of the fault for more than 10 km on either side. For us to image the San Andreas fault, which appears from microseismicity to be dipping to the northeast, our profile must straddle the fault with sources on both sides, but especially on the northeast side, along Hwy 195.
- e) Line 5. This line is designed to image the base of the sedimentary basin beneath the city of Palm Desert, one of the larger cities in the Coachella Valley, and to connect with high-resolution data sets, current and planned, along Thousand Palms Canyon Road, the only road access through the Indio Hills at this latitude in the Coachella Valley. The southwest end of the line is constrained to lie along Hwy 74 into the rugged Peninsular Ranges. The central part of the line crosses the Coachella Valley National Wildlife Refuge (for the Fringed-toed Lizard). We propose no shots within this refuge but do propose (Refuge-supervised) installation of seismographs every ~300 ft. We could move the line to avoid this Refuge but would run into access and profile alignment problems in the Indio Hills to the northeast.
- f) Line 6. This line is designed to image the base of the sedimentary basin in the vicinity of Palm Springs, the largest city in the Coachella Valley, and to image the San Andreas fault zone where we know one or more branches are dipping moderately northeast, based on aftershock sequences (1948, 1986). This line is constrained in its central part to lie along "Kickapoo Trail", a dirt road, which is the only access road through the Little San Bernardino Mts. An alternate route for this line might lie along Hwy 62 into Morongo Valley. Disadvantages of the latter route include 1) safety and seismic-noise issues in deploying and detonating seismic charges along this very busy highway, especially through the narrow canyon leading into Morongo Valley, and 2) the difficulty in extending this line in a straight fashion northward of Morongo Valley into the rugged San Bernardino Mts.
- g) Line 7. This line is designed to get a high-resolution image of the San Andreas fault in a location where the evidence in microseismicity is clearest for a moderate northeastward dip on the fault. It is important to confirm (or reject) this dipping geometry with independent seismic-imaging data in order to correctly calculate rupture and shaking from a large earthquake along this stretch of the San Andreas fault. This location was also chosen because a railroad track provides access along much of the line. Only the western 2 km, or so will require that we walk cross country to plant seismometers and hand-auger shot holes.
- 2) Moving shotpoints within lines is certainly possible, and we have done this in a number of cases in order to provide environmentally feasible shots, to allow drill-rig access, and to give proper set-backs from structures. However, our imaging method produces the best results when the shots are approximately evenly spaced along the line.

- 3) No methods of investigation of the subsurface other than seismic methods produce reliable estimates of sedimentary basin depth on a regional basis. Modeling of gravity data produces estimates, but these can be in serious error unless calibrated by seismic methods. Deep drilling can also determine basin depth, but not on a regional basis, unless the region is extensively drilled. The Salton Trough is not extensively drilled. (We will, of course, use all deep drilling results available to complement our study.)
- 4) In order for us to obtain a coherent image of the subsurface beneath the Salton Trough, we need a fairly continuous and even distribution of shotpoints. Elimination of any group of shotpoints degrades the image seriously, especially the part of the image immediately beneath these shotpoints. It is never possible to predict where an image can safely be degraded while still allowing us to make sense of what we see.

5 and 6) See discussion of the "Imaging Method" above. Use of vibrator trucks or earthquakes as sources will not substitute in the survey we propose, which relies on detonation of deeply-buried seismic charges. We will not get clear images that will improve our knowledge of earthquake hazards of this region.

SECTION III: AFFECTED ENVIRONMENT

A. Topography

Not affected by proposed action.

B. Climate

Not affected by proposed action.

C. Air Quality

Not affected by proposed action.

D. Geology

Not affected by the proposed action. Also, no earthquakes will be triggered by the shots (see Section I, FAQ).

E. Soil Quality

In all cases, drilling would occur in areas already impacted by grading or dumping. Therefore, no significant impact of the proposed action is anticipated. Our drilling will produce approximately ½ cubic yard of drill cuttings. With permission, we will spread this small amount along canal banks or local depressions. Otherwise, we will haul it off.

F. Water Quality

Water quality has been tested before and after seismic charges have been detonated directly in water and no change except a temporary (two week) increase of suspended particles has been detected (Appendix II). Also, in our 30-year experience, we have never damaged a spring or a well (Section I, FAQ)

G. Vegetation/Wildlife

Drillhole sites are placed so as to have minimal impact on vegetation. Access to the sites is by existing dirt roads and tracks. Seismographs will be carried off road by foot, and digging of the sensor holes will be done by hand shovels. We will have biological monitors present during drilling at sensitive sites in order to avoid harming endangered species of plants or animals.

H. Archaeological Resources.

We have had archaeological surveys performed at all shotpoint sites on federal and state lands (approximately 65 sites). At the few sites where archaeological resources have been found, the shotpoint locations have been moved so as not to disturb the resources.

I. Traffic Control

Temporary traffic control will be needed in a few locations along road easements, including Hwy 74 (one or two locations), Thousand Palms Canyon Road (two or three locations), and Hwy 195 (several locations).

SECTION IV: MITIGATION MEASURES

<u>1) Drilling, loading, shooting.</u> During drilling, a minimal amount of water is used to help flush cuttings from the hole and to mitigate clay adherence to the drill steel. The footprint of the drill rig is approximately 30×50 feet, and in all feasible cases, we place

this footprint on gound that has previously been disturbed. Most of our drill holes are planned to be 6 inches in diameter by 60-75 feet deep, producing approximately ½ cubic yard of drill cuttings. We will dispose of the cuttings locally, if permission is granted, or we will haul off the cuttings. The drill hole is generally cased to the bottom, especially in clay-rich areas, and plugged at the bottom. Approximately a week prior to detonation, the seismic charge (an ammonium-nitrate-based blasting agent) is delivered to the site in a pump truck. This product is pumped down hole to a depth of approximately 60-70 feet from the surface. A bentonite seal is placed on top of the charge and the remainder of the drill hole is filled with gravel or hole cuttings. Detonating cord extends upward through the gravel or hole cuttings to the surface and is wrapped around a locking bar which holds the locked cap in place on the casing (see Fig. 4a). The charge is inert until an electrical blasting cap is attached to the detonating cord approximately 5 minutes prior to shot time.

<u>2) Reclamation</u>. Should there be any casing movement or slumping at the shothole after detonation, it will be filled with imported fill. For approximately 10% of our shots in the Los Angeles Region Seismic Experiment (in the 1990's), casing moved up in the drill hole and/or there was a small ground disturbance (collapse crater up to a few feet in diameter). Any casing protruding from the hole will be cut off at least two feet below the surface and removed from the site. Any collapse crater will be filled with imported fill. The drilling area will be raked and recontoured to as near to its original condition

as possible.

3) Test Shots. In June 2009, a series of calibration shots were detonated in the southern Imperial Valley in an unused field adjacent to Hwy 7 just north of the U.S. /Mexican border. These shots were used to measure peak particle velocity and acceleration and to test the effects of seismic energy on buried clay drainage pipes that are used by the irrigation districts in both the Coachella Valley and Imperial Valley. We exposed sections of pipe several meters long with a backhoe at distances of 20-50 feet from the shot holes, and, after each shot, visually inspected the pipes. Our shots produced no pipe damage. An engineer from the Imperial Irrigation District (IID) observed these tests and concluded our survey posed no danger to the irrigation system.

SECTION V: CALENDAR

Our calendar schedule has shifted from our original schedule (wherein we would have acquired the data in the Winter or Spring of 2010); the shift resulted from the lengthy process of permitting on federal lands. Currently, our schedule is the following:

Shothole drilling—Aug. 2010-Mar 2011 Shothole loading—Jan-Mar 2011 Seismograph deployment—Feb-Mar 2011 Shooting—Feb-Mar 2011 Cleanup—late Mar 2011

Note that drilling will likely continue during shooting and recording. Our experience indicates that some permits are not obtained until quite late.

Figure 1. Shuttle Photo of Southern California. Oblique view from the Gulf of California looking toward northern California. Faults are shown in red; extentional areas are shown in purple.

EXPLANATION Pre-late Miocene crystalline basement Late Miocene and younger metasedimentary basement Subbasement (basaltic intrusions) Inferred intrusions or fractures underlying geothermal areas **SAN ANDREAS** BSZ∗ Brawley seismic zone **FAULT** Fault-Arrows indicate direction of relative movement Salton Sea shoreline Direction of relative plate movement Obsidian **SAN JACINTO Butte FAULT ZONE** Superstition Mountain **ELSINORE FAULT** Brawley El Centro Subbasement

Figure 2. Block diagram of Imperial Valley with soft sediments stripped off; from 1979 seismic-imaging survey. Red, granitic basement; yellow, metamorphosed young sediment from Colorado River; blue-grey, solidified magmatic rocks (basaltic); light green, young basaltic and other intrusive and extrusive rocks. Diagram shows Brawley seismic zone (BSZ)—a spreading center—between San Andreas and Imperial Faults.

IMPERIAL FAULT

Figure 3. Map of Salton Seismic-Imaging Project (SSIP). Line 1-S: San Luis, AZ to southern end of Salton Sea, Line 1-M: southern to northern end of Salton Sea (marine); Line 1-N: northern end of Salton Sea to San Bernardino mountains; Line 2: San Diego County to Colorado River, AZ, Line 3: Peninsular Ranges to Chocholate mountains; Line 4: southwest to northeast flank of southern Coachella Valley; Line 5: southwest to northeast flank of central Coachella Valley (through Palm Desert); Line 6: Palm Springs to Yucca Valley; Line 7: Salt Creek to a point 7-km east of Salton Sea; Line 7-M: marine extention of Line 7 into Salton Sea; Line 8: western shore of Salton Sea; Line 9: eastern shore of Salton Sea.

Figure 4. (a) Diagram of a shot hole with blasting agent loaded and shot hole secured. (b) "Texan" seismic recorder with geophone (orange) attached.

APPENDIX I - Minimum Setback-Distance Tables

The following tables provide minimum setback distances (in feet) for shots of various sizes (in pounds), various geologic site conditions ("Hard rock," "Wet Alluvium," "Dry Alluvium," and "Sedimentary Rock"), various thresholds of ground velocity (1-, 2-, and 5 in/s), and various certainty levels (90, 95, and 99%) (See Fuis et al., 2001).

Human sensations and building damage are related to ground velocities produced by shots approximately as follows:

- 1 in/s of ground velocity can trigger complaints from humans
- 2 in/s of ground velocity can cause hairline fractures in old stucco
- 5 in/s of ground velocity can cause incipient/cosmetic damage to older engineered buildings and structures.

[These thresholds were developed by us from the data of Edwards and Northwood, 1960; Nicholls and others, 1971; Northwood and others, 1963; Dupont de Nemours & co., 1977; Stagg and others, 1980; and W. Bender, written manual "Explosives Training Course," 1992).]

There is some random variability in the ground velocities produced by shots. For example, one hundred shots of identical charge size recorded at the same distance will produce a range of ground velocities. Our tables specify that approximately 90, 95, or 99 of these shots will produce ground velocities less than the three thresholds listed above.

We use these tables as follows

- 1) Determine the distance to the nearest building or structure (or nearest sensitive building or structure)
- 2) Determine if the building is occupied
- 3) Determine certain construction factors for the building or structure, including
 - a) approximate age
 - b) presence or absence of stucco
 - c) engineered or not
 - d) other sensitivities
- 4) Choose an appropriate certainty level. We typically use the 95-99% certainty level for the 1-in/s threshold (potential human complaints), 95-99% certainty level for the 2-in/s threshold (potential cosmetic damage to old stucco), and 90-95% certainty level for the 5-in/s threshold (potential incipient/cosmetic damage to engineered structures).

Use of these tables during the Los Angeles Regional Seismic Experiment (LARSE) was successful in avoiding damage to buildings and other structure, and no valid human complaints about shaking were reported to us during the survey (Fuis et al., 2001). This survey traversed parts of the City of Los Angeles, including Santa Monica and several municipalities in the San Fernando Valley, as well as the City of Santa Clarita. However, in later (2005) discussions of this survey with the chief of the Los Angeles Office of Emergency Management, complaints about our survey were reported. Unfortunately, no record was kept as to whether the complaints were a) valid complaints about shaking produced by our shots, b) complaints attributed to our shots that were shaking from the 1999 M 7.3 Hector Mine earthquake and its aftershocks (which

occurred before and during our survey), or c) complaints that our activities might trigger earthquakes or otherwise cause damage. The latter type of complaint is, by far, the most common.

References cited:

- Dupont de Nemours, E.I., and company, 1977, Blasters Handbook.
- Edwards, A.T., and Northwood, T.D., 1960, Experimental studies of the effects of blasting on structures: *The Engineer*, Sept. 1960.
- Fuis, G.S., Murphy, J.M., Okaya, D.A., Clayton, R.W., Davis, P.M., Thygesen, K., Baher, S.A., Ryberg, T., Benthien, M.L., Simila, G., Perron, J.T., Yong, A.K., Reusser, L., Kaip, G., Fort, M.D., Asudeh, I., Sell, R., Vanschaack, J.R., Criley, E.E., Kaderabek, R., Kohler, W.M., Magnuski, N.H., 2001, Report for borehole explosion data acquired in the 1999 Los Angeles Region Seismic Experiment (LARSE II), Southern California: Part I, Description of the survey: U.S. Geological Survey Open-File Report 01-408, 82 p.
- Nicholls, H.R., Johnson, C.F., and Duvall, W.I., 1971, Blasting vibrations and their effects on structures, *U.S. Bureau of Mines Bulletin 656*.
- Northwood, T.D., Crawford, R., and Edwards, A.T., 1963, Blasting vibrations and building damage: *The Engineer*, May 1963.
- Stagg, M.S., Siskind, D.E., Stevens, M.G., and Dowding, C.H., 1980, Effects of repeated blasting on a wood frame house: *U.S. Bureau of Mines R I* 8896.

90.00 percent of shots

will produce ground velocities less than 1.00 in/s at this distance.

95.00 percent of shots

will produce ground velocities less than 1.00 in/s at this distance.

(lb) Rock Alluvium Alluvium Rock (lb) Rock Alluvium Alluvium Rock 5 77 67 36 24 5 103 90 48 15 131 114 61 40 15 175 152 82 20 151 131 71 46 20 201 175 94 25 168 146 78 51 25 225 195 105 30 183 160 86 55 30 245 213 114 35 198 172 92 60 35 264 230 123 40 211 183 98 63 40 282 245 131 45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 <td< th=""><th></th><th></th><th colspan="4">Distance (feet)</th><th colspan="6">Distance (feet)</th></td<>			Distance (feet)				Distance (feet)					
10 108 94 51 33 10 144 125 67 15 131 114 61 40 15 175 152 82 20 151 131 71 46 20 201 175 94 25 168 146 78 51 25 225 195 105 30 183 160 86 55 30 245 213 114 35 198 172 92 60 35 264 230 123 40 211 183 98 63 40 282 245 131 45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 1 </th <th>Shot Size (lb)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Se Roo</th>	Shot Size (lb)									Se Roo		
15 131 114 61 40 15 175 152 82 20 151 131 71 46 20 201 175 94 25 168 146 78 51 25 225 195 105 30 183 160 86 55 30 245 213 114 35 198 172 92 60 35 264 230 123 40 211 183 98 63 40 282 245 131 45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 1 70 277 241 129 83 70 371 322 17	5	77	67	36	24	5	103	90	48			
20 151 131 71 46 20 201 175 94 25 168 146 78 51 25 225 195 105 30 183 160 86 55 30 245 213 114 35 198 172 92 60 35 264 230 123 40 211 183 98 63 40 282 245 131 45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 1 70 277 241 129 83 70 371 322 172 1 80 295 257 138 89 80 336 34	10	108	94	51	33	10	144	125	67			
25 168 146 78 51 25 225 195 105 30 183 160 86 55 30 245 213 114 35 198 172 92 60 35 264 230 123 40 211 183 98 63 40 282 245 131 45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 17 70 277 241 129 83 70 371 322 172 18 90 313 272 146 94 90 419 364 195 19 100 329 286 153 99 100 <	15	131	114	61	40	15	175	152	82			
30 183 160 86 55 30 245 213 114 35 198 172 92 60 35 264 230 123 40 211 183 98 63 40 282 245 131 45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 1 70 277 241 129 83 70 371 322 172 1 80 295 257 138 89 80 396 344 184 184 1 90 313 272 146 94 90 419 364 195 1 100 329 286 153	20	151	131	71	46	20	201	175	94			
35 198 172 92 60 35 264 230 123 40 211 183 98 63 40 282 245 131 45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 1 70 277 241 129 83 70 371 322 172 1 80 295 257 138 89 80 396 344 184 19 100 329 286 153 99 100 441 383 205 1 150 402 349 186 120 150 538 467 249 1 200 462 402 214	25	168	146	78	51	25	225	195	105			
40 211 183 98 63 40 282 245 131 45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 1 70 277 241 129 83 70 371 322 172 1 80 295 257 138 89 80 396 344 184 184 90 313 272 146 94 90 419 364 195 1 100 329 286 153 99 100 441 383 205 1 150 402 349 186 120 150 538 467 249 1 200 462 402	30	183	160	86	55	30	245	213	114			
45 223 194 104 67 45 299 260 139 50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 17 70 277 241 129 83 70 371 322 172 </td <td>35</td> <td>198</td> <td>172</td> <td>92</td> <td>60</td> <td>35</td> <td>264</td> <td>230</td> <td>123</td> <td>•</td>	35	198	172	92	60	35	264	230	123	•		
50 235 204 110 71 50 315 273 146 60 257 223 120 77 60 344 299 160 17 70 277 241 129 83 70 371 322 172 18 80 295 257 138 89 80 396 344 184 184 90 313 272 146 94 90 419 364 195 195 100 329 286 153 99 100 441 383 205 1150 538 467 249 14 249 140 240 244 138 200 620 538 287 14 289 153 250 692 600 320 22 300 564 490 261 168 300 756 657 350 23 350 608 528	40	211	183	98	63	40	282	245	131			
60 257 223 120 77 60 344 299 160 17 70 277 241 129 83 70 371 322 172 17 80 295 257 138 89 80 396 344 184 184 90 313 272 146 94 90 419 364 195 1 100 329 286 153 99 100 441 383 205 1 150 402 349 186 120 150 538 467 249 1 200 462 402 214 138 200 620 538 287 1 250 516 448 239 153 250 692 600 320 2 350 608 528 281 181 350 816 708 377 2 450 688 597 318 204 450 924 802 426	45	223	194	104	67	45	299	260	139	9		
70 277 241 129 83 70 371 322 172 18 80 295 257 138 89 80 396 344 184 184 195 11 195 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 11 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 12 12 12 13 14 14 18 12 13 14 14 18 14 18 14 18 19 18	50	235	204	110	71	50	315	273	146	9		
80 295 257 138 89 80 396 344 184 184 184 190 313 272 146 94 90 419 364 195 11 195 11 100 329 286 153 99 100 441 383 205 11 100 441 383 205 11 100 441 383 205 12 11 100 441 383 205 12 12 100 441 383 205 12	60	257	223	120	77	60	344	299	160	10		
90 313 272 146 94 90 419 364 195 1 100 329 286 153 99 100 441 383 205 1 150 402 349 186 120 150 538 467 249 1 200 462 402 214 138 200 620 538 287 1 250 516 448 239 153 250 692 600 320 2 300 564 490 261 168 300 756 657 350 2 350 608 528 281 181 350 816 708 377 2 400 649 564 300 193 400 871 756 402 2 450 688 597 318 204 450 924 802 426 2 500 724 629 335 215 500 973 844 449 2 600 792 688 366 235 600 1064 924 491 3 700 855 742 395 253 700 1149 997 529 3 800 913 792 421 270 800 1227 1064 565 3 900 968 840 446 286 900 1300 1128 598 3 1000 1019 884 470 301 1000 1370 1188 630 4 2000 1436 1245 660 422 2000 1932 1675 886 55 2500 1603 1390 737 471 2500 2158 1871 989	70	277	241	129	83	70	371	322	172	1		
100 329 286 153 99 100 441 383 205 150 150 402 349 186 120 150 538 467 249 16 200 462 402 214 138 200 620 538 287 17 250 516 448 239 153 250 692 600 320 22 300 564 490 261 168 300 756 657 350 23 350 608 528 281 181 350 816 708 377 24 400 649 564 300 193 400 871 756 402 24 450 688 597 318 204 450 924 802 426 24 500 724 629 335 215 500 973 844 449 24 600 792 688 366 235 700 1149 997	80	295	257	138	89	80	396	344	184	1		
150 402 349 186 120 150 538 467 249 120 200 462 402 214 138 200 620 538 287 13 250 516 448 239 153 250 692 600 320 22 300 564 490 261 168 300 756 657 350 20 350 608 528 281 181 350 816 708 377 20 400 649 564 300 193 400 871 756 402 22 450 688 597 318 204 450 924 802 426 22 500 724 629 335 215 500 973 844 449 22 600 792 688 366 235 600 1064 924 491 33 800 913 792 421 270 800 1227 1064 <td>90</td> <td>313</td> <td>272</td> <td>146</td> <td>94</td> <td>90</td> <td>419</td> <td>364</td> <td>195</td> <td>1.</td>	90	313	272	146	94	90	419	364	195	1.		
200 462 402 214 138 200 620 538 287 1 250 516 448 239 153 250 692 600 320 2 300 564 490 261 168 300 756 657 350 2 350 608 528 281 181 350 816 708 377 2 400 649 564 300 193 400 871 756 402 2 450 688 597 318 204 450 924 802 426 2 500 724 629 335 215 500 973 844 449 2 600 792 688 366 235 600 1064 924 491 3 700 855 742 395 253 700 1149 997 529 3 800 913 792 421 270 800 1227 1064	100	329	286	153	99	100	441	383	205	1		
250 516 448 239 153 250 692 600 320 28 300 564 490 261 168 300 756 657 350 28 350 608 528 281 181 350 816 708 377 27 400 649 564 300 193 400 871 756 402 22 450 688 597 318 204 450 924 802 426 22 500 724 629 335 215 500 973 844 449 22 600 792 688 366 235 600 1064 924 491 33 700 855 742 395 253 700 1149 997 529 33 800 913 792 421 270 800 1227 1064 565 33 900 968 840 446 286 900 1300 1128<	150	402	349	186	120	150	538	467	249	1		
300 564 490 261 168 300 756 657 350 28 350 608 528 281 181 350 816 708 377 27 400 649 564 300 193 400 871 756 402 22 450 688 597 318 204 450 924 802 426 22 500 724 629 335 215 500 973 844 449 22 600 792 688 366 235 600 1064 924 491 33 700 855 742 395 253 700 1149 997 529 33 800 913 792 421 270 800 1227 1064 565 33 900 968 840 446 286 900 1300 1128 598 33 1000 1019 884 470 301 1000 1370	200	462	402	214	138	200	620	538	287	1		
350 608 528 281 181 350 816 708 377 28 400 649 564 300 193 400 871 756 402 28 450 688 597 318 204 450 924 802 426 28 500 724 629 335 215 500 973 844 449 28 600 792 688 366 235 600 1064 924 491 33 700 855 742 395 253 700 1149 997 529 33 800 913 792 421 270 800 1227 1064 565 33 900 968 840 446 286 900 1300 1128 598 33 1000 1019 884 470 301 1000 1370 1188 630 44 1500 1245 1080 573 367 1500 1675	250	516	448	239	153	250	692	600	320	2		
400 649 564 300 193 400 871 756 402 24 450 688 597 318 204 450 924 802 426 24 500 724 629 335 215 500 973 844 449 24 600 792 688 366 235 600 1064 924 491 33 700 855 742 395 253 700 1149 997 529 33 800 913 792 421 270 800 1227 1064 565 33 900 968 840 446 286 900 1300 1128 598 33 1000 1019 884 470 301 1000 1370 1188 630 44 1500 1245 1080 573 367 1500 1675 1452 769 42 2000 1436 1245 660 422 2000 1932 <td>300</td> <td>564</td> <td>490</td> <td>261</td> <td>168</td> <td>300</td> <td>756</td> <td>657</td> <td>350</td> <td>2</td>	300	564	490	261	168	300	756	657	350	2		
450 688 597 318 204 450 924 802 426 24 500 724 629 335 215 500 973 844 449 22 600 792 688 366 235 600 1064 924 491 33 700 855 742 395 253 700 1149 997 529 33 800 913 792 421 270 800 1227 1064 565 33 900 968 840 446 286 900 1300 1128 598 33 1000 1019 884 470 301 1000 1370 1188 630 42 2000 1245 1080 573 367 1500 1675 1452 769 42 2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 215	350	608	528	281	181	350	816	708	377	2		
500 724 629 335 215 500 973 844 449 24 600 792 688 366 235 600 1064 924 491 33 700 855 742 395 253 700 1149 997 529 33 800 913 792 421 270 800 1227 1064 565 33 900 968 840 446 286 900 1300 1128 598 33 1000 1019 884 470 301 1000 1370 1188 630 4 1500 1245 1080 573 367 1500 1675 1452 769 4 2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 2158 1871 989 6	400	649	564	300	193	400	871	756	402	2		
600 792 688 366 235 600 1064 924 491 387 700 855 742 395 253 700 1149 997 529 380 800 913 792 421 270 800 1227 1064 565 380 900 968 840 446 286 900 1300 1128 598 380 1000 1019 884 470 301 1000 1370 1188 630 480 1500 1245 1080 573 367 1500 1675 1452 769 480 2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 2158 1871 989 6	450	688	597	318	204	450	924	802	426	2		
700 855 742 395 253 700 1149 997 529 380 800 913 792 421 270 800 1227 1064 565 38 900 968 840 446 286 900 1300 1128 598 38 1000 1019 884 470 301 1000 1370 1188 630 42 1500 1245 1080 573 367 1500 1675 1452 769 42 2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 2158 1871 989 6	500	724	629	335	215	500	973	844	449	2		
800 913 792 421 270 800 1227 1064 565 3 900 968 840 446 286 900 1300 1128 598 3 1000 1019 884 470 301 1000 1370 1188 630 4 1500 1245 1080 573 367 1500 1675 1452 769 4 2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 2158 1871 989 6	600	792	688	366	235	600	1064	924	491	3		
900 968 840 446 286 900 1300 1128 598 3 1000 1019 884 470 301 1000 1370 1188 630 4 1500 1245 1080 573 367 1500 1675 1452 769 4 2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 2158 1871 989 6	700	855	742	395	253	700	1149	997	529	3		
1000 1019 884 470 301 1000 1370 1188 630 4 1500 1245 1080 573 367 1500 1675 1452 769 4 2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 2158 1871 989 6	800	913	792	421	270	800	1227	1064	565	3		
1500 1245 1080 573 367 1500 1675 1452 769 4 2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 2158 1871 989 6	900	968	840	446	286	900	1300	1128	598	3		
2000 1436 1245 660 422 2000 1932 1675 886 5 2500 1603 1390 737 471 2500 2158 1871 989 6	1000	1019	884	470	301	1000	1370	1188	630	40		
2500 1603 1390 737 471 2500 2158 1871 989 6	1500	1245	1080	573	367	1500	1675	1452	769	4		
	2000	1436	1245	660	422	2000	1932	1675	886	5		
3000 1755 1522 806 515 3000 2363 2048 1082 6	2500	1603	1390	737	471	2500	2158	1871	989	6		
	3000	1755	1522	806	515	3000	2363	2048	1082	69		

99.00 percent of shots

will produce ground velocities less than 1.00 in/s at this distance.

90.00 percent of shots

will produce ground velocities less than 2.00 in/s at this distance.

		Distance (feet)				
Shot S	Size	Hard Rock	Wet Alluvium	Dry Alluvium	Sed Rock	
	5	177	154	82	53	
1	0	247	215	115	74	
1	5	301	262	140	90	
2	20	346	301	161	104	
2	25	386	336	179	115	
3	80	422	367	196	126	
3	35	455	396	211	136	
4	Ю	486	422	225	145	
4	ł5	515	447	239	153	
5	0	542	471	251	161	
6	0	593	515	275	176	
7	'0	640	555	296	190	
8	30	683	593	316	203	
9	0	724	628	335	215	
10	00	762	662	352	226	
15	0	931	808	429	275	
20	00	1072	931	494	316	
25		1197	1039	551	353	
30	00	1310	1137	603	386	
35	0	1414	1227	650	416	
40	00	1511	1310	694	444	
45		1602	1389	736	470	
50		1687	1463	775	495	
60		1847	1602	848	541	
70		1994	1729	915	584	
80		2131	1847	977	623	
90		2259	1958	1035	661	
100		2381	2064	1090	696	
150		2914	2525	1332	849	
200		3364	2914	1536	979	
250		3760	3257	1716	1093	
300	00	4119	3568	1878	1195	

95.00 percent of shots

will produce ground velocities less than 2.00 in/s at this distance.

99.00 percent of shots

will produce ground velocities less than 2.00 in/s at this distance.

Not Size (Ib) Hard Rock Wet Alluvium Alluvium Dry Rock Sed Rock Shot Size (Ib) Hard Rock 5 68 59 32 21 5 116 10 95 83 45 29 10 162 15 115 100 54 35 15 198 20 133 115 62 40 20 227 25 148 128 69 45 25 253 30 161 140 75 49 30 277 35 174 151 81 52 35 299 40 185 161 87 56 40 319 45 196 171 92 59 45 338 50 207 180 96 62 50 355 60 226 196 105 68 60 388 70 <td< th=""><th></th><th></th><th>Distan</th><th>ce (feet)</th><th></th><th>ı</th><th></th><th></th><th>Distan</th><th>Distance (feet)</th></td<>			Distan	ce (feet)		ı 			Distan	Distance (feet)
10 95 83 45 29 10 162 141 15 115 100 54 35 15 198 172 20 133 115 62 40 20 227 198 1 25 148 128 69 45 25 253 220 1 30 161 140 75 49 30 277 241 1 35 174 151 81 52 35 299 260 1 40 185 161 87 56 40 319 277 1 45 196 171 92 59 45 338 293 1 50 207 180 96 62 50 355 309 1 60 226 196 105 68 60 388 338 1 70 243 2	Shot Size (lb)							Wet Alluvium	Dr Alluv	
15 115 100 54 35 15 198 172 28 20 133 115 62 40 20 227 198 10 25 148 128 69 45 25 253 220 11 30 161 140 75 49 30 277 241 12 35 174 151 81 52 35 299 260 13 40 185 161 87 56 40 319 277 14 45 196 171 92 59 45 338 293 15 50 207 180 96 62 50 355 309 16 60 226 196 105 68 60 388 338 18 70 243 212 113 73 70 419 364 19	5	68	59	32	21	5	116	101		54
20 133 115 62 40 20 227 198 10 25 148 128 69 45 25 253 220 11 30 161 140 75 49 30 277 241 12 35 174 151 81 52 35 299 260 13 40 185 161 87 56 40 319 277 14 45 196 171 92 59 45 338 293 15 50 207 180 96 62 50 355 309 16 60 226 196 105 68 60 388 338 18 70 243 212 113 73 70 419 364 19 80 260 226 121 78 80 447 388 20	10	95	83	45	29	10	162	141	7	76
25 148 128 69 45 25 253 220 11 30 161 140 75 49 30 277 241 12 35 174 151 81 52 35 299 260 13 40 185 161 87 56 40 319 277 14 45 196 171 92 59 45 338 293 15 50 207 180 96 62 50 355 309 16 60 226 196 105 68 60 388 338 18 70 243 212 113 73 70 419 364 19 80 260 226 121 78 80 447 388 20 90 275 239 128 82 90 474 411 22	15	115	100	54	35	15	198	172	9	2
30 161 140 75 49 30 277 241 123 35 174 151 81 52 35 299 260 133 40 185 161 87 56 40 319 277 144 45 196 171 92 59 45 338 293 155 50 207 180 96 62 50 355 309 166 60 226 196 105 68 60 388 338 186 70 243 212 113 73 70 419 364 199 80 260 226 121 78 80 447 388 200 90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 23 <td>20</td> <td>133</td> <td>115</td> <td>62</td> <td>40</td> <td>20</td> <td>227</td> <td>198</td> <td>100</td> <td>6</td>	20	133	115	62	40	20	227	198	100	6
35 174 151 81 52 35 299 260 133 40 185 161 87 56 40 319 277 146 45 196 171 92 59 45 338 293 155 50 207 180 96 62 50 355 309 165 60 226 196 105 68 60 388 338 186 70 243 212 113 73 70 419 364 199 80 260 226 121 78 80 447 388 207 90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 23° 150 353 307 164 105 150 608 528 28°	25	148	128	69	45	25	253	220	118	3
40 185 161 87 56 40 319 277 146 45 196 171 92 59 45 338 293 157 50 207 180 96 62 50 355 309 165 60 226 196 105 68 60 388 338 186 70 243 212 113 73 70 419 364 194 80 260 226 121 78 80 447 388 207 90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 23 150 353 307 164 105 150 608 528 286 200 406 353 188 121 200 701 608 324	30	161	140	75	49	30	277	241	129	9
45 196 171 92 59 45 338 293 155 50 207 180 96 62 50 355 309 163 60 226 196 105 68 60 388 338 181 70 243 212 113 73 70 419 364 194 80 260 226 121 78 80 447 388 207 90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 233 150 353 307 164 105 150 608 528 286 200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 367<	35	174	151	81	52	35	299	260	139	9
50 207 180 96 62 50 355 309 165 60 226 196 105 68 60 388 338 180 70 243 212 113 73 70 419 364 194 80 260 226 121 78 80 447 388 207 90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 231 150 353 307 164 105 150 608 528 282 200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742	40	185	161	87	56	40	319	277	148	}
60 226 196 105 68 60 388 338 180 70 243 212 113 73 70 419 364 194 80 260 226 121 78 80 447 388 207 90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 231 150 353 307 164 105 150 608 528 282 200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801	45	196	171	92	59	45	338	293	157	
70 243 212 113 73 70 419 364 194 80 260 226 121 78 80 447 388 207 90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 231 150 353 307 164 105 150 608 528 282 200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855	50	207	180	96	62	50	355	309	165	
80 260 226 121 78 80 447 388 207 90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 231 150 353 307 164 105 150 608 528 282 200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 <td>60</td> <td>226</td> <td>196</td> <td>105</td> <td>68</td> <td>60</td> <td>388</td> <td>338</td> <td>180</td> <td></td>	60	226	196	105	68	60	388	338	180	
90 275 239 128 82 90 474 411 220 100 289 252 135 87 100 499 433 231 150 353 307 164 105 150 608 528 282 200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 <td>70</td> <td>243</td> <td>212</td> <td>113</td> <td>73</td> <td>70</td> <td>419</td> <td>364</td> <td>194</td> <td></td>	70	243	212	113	73	70	419	364	194	
100 289 252 135 87 100 499 433 231 150 353 307 164 105 150 608 528 282 200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 10	80	260	226	121	78	80	447	388	207	
150 353 307 164 105 150 608 528 282 200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 1045 958 800 801 695 370 237 800 1388 <td< td=""><td>90</td><td>275</td><td>239</td><td>128</td><td>82</td><td>90</td><td>474</td><td>411</td><td>220</td><td></td></td<>	90	275	239	128	82	90	474	411	220	
200 406 353 188 121 200 701 608 324 250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 1045 554 700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 <	100	289	252	135	87	100	499	433	231	
250 453 393 210 135 250 782 679 361 300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 1045 554 700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 90 1472	150	353	307	164	105	150	608	528	282	
300 495 430 229 147 300 855 742 395 350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 1045 554 700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550	200	406	353	188	121	200	701	608	324	
350 534 464 247 159 350 923 801 426 400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 1045 554 700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 <td>250</td> <td>453</td> <td>393</td> <td>210</td> <td>135</td> <td>250</td> <td>782</td> <td>679</td> <td>361</td> <td></td>	250	453	393	210	135	250	782	679	361	
400 570 495 264 169 400 986 855 455 450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 1045 554 700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413	300	495	430	229	147	300	855	742	395	
450 604 524 280 179 450 1045 907 482 500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 1045 554 700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500	350	534	464	247	159	350	923	801	426	
500 636 552 294 189 500 1100 955 507 600 695 604 322 206 600 1204 1045 554 700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500 2444 2118 1119	400	570	495	264	169	400	986	855	455	
600 695 604 322 206 600 1204 1045 554 700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500 2444 2118 1119	450	604	524	280	179	450	1045	907	482	
700 750 651 347 222 700 1299 1127 598 800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500 2444 2118 1119	500	636	552	294	189	500	1100	955	507	
800 801 695 370 237 800 1388 1204 638 900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500 2444 2118 1119	600	695	604	322	206	600	1204	1045	554	
900 849 737 392 251 900 1472 1276 677 1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500 2444 2118 1119	700	750	651	347	222	700	1299	1127	598	
1000 894 776 413 264 1000 1550 1345 712 1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500 2444 2118 1119	800	801	695	370	237	800	1388	1204	638	
1500 1092 948 503 322 1500 1896 1644 870 2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500 2444 2118 1119	900	849	737	392	251	900	1472	1276	677	
2000 1259 1092 579 371 2000 2187 1896 1002 2500 1406 1219 647 413 2500 2444 2118 1119	1000	894	776	413	264	1000	1550	1345	712	
2500 1406 1219 647 413 2500 2444 2118 1119	1500	1092	948	503	322	1500	1896	1644	870	
	2000	1259	1092	579	371	2000	2187	1896	1002	
3000 1539 1334 707 452 3000 2676 2319 1224	2500	1406	1219	647	413	2500	2444	2118	1119	
	3000	1539	1334	707	452	3000	2676	2319	1224	

90.00 percent of shots

will produce ground velocities less than 5.00 in/s at this distance.

95.00 percent of shots

will produce ground velocities less than 5.00 in/s at this distance.

Distance (feet)

Shot Size (Ib) Hard Rock Wet Alluvium Dry Alluvium Sed Rock 5 30 26 14 9 10 41 36 19 13 15 50 44 24 15 20 57 50 27 18 25 64 56 30 19 30 70 61 33 21 35 75 65 35 23 40 80 70 38 24 45 85 74 40 26 50 89 78 42 27 60 97 85 46 30 70 105 91 49 32 80 112 97 52 34 90 118 103 55 36 100 124 108 58 38 150 151 132 71 <th></th> <th colspan="4">Distance (feet)</th>		Distance (feet)			
10 41 36 19 13 10 15 50 44 24 15 15 20 57 50 27 18 20 25 64 56 30 19 25 30 70 61 33 21 30 35 75 65 35 23 35 40 80 70 38 24 40 45 85 74 40 26 45 50 89 78 42 27 50 60 97 85 46 30 60 70 105 91 49 32 70 80 112 97 52 34 80 90 118 103 55 36 90 100 124 108 58 38 100 150 151 132 71 46 150 200 174 151 81 52 200 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
15 50 44 24 15 15 20 57 50 27 18 20 25 64 56 30 19 25 30 70 61 33 21 30 35 75 65 35 23 35 40 80 70 38 24 40 45 85 74 40 26 45 50 89 78 42 27 50 60 97 85 46 30 60 70 105 91 49 32 70 80 112 97 52 34 80 90 118 103 55 36 90 100 124 108 58 38 100 150 151 132 71 46 150 200 174 151 81 52 200 250 194 169 91 58 2	5	30	26	14	9
20 57 50 27 18 20 25 64 56 30 19 25 30 70 61 33 21 30 35 75 65 35 23 35 40 80 70 38 24 40 45 85 74 40 26 45 50 89 78 42 27 50 60 97 85 46 30 60 70 105 91 49 32 70 80 112 97 52 34 80 90 118 103 55 36 90 100 124 108 58 38 100 150 151 132 71 46 150 200 174 151 81 52 200 250 194 169 <t< td=""><td>10</td><td>41</td><td>36</td><td>19</td><td>13</td></t<>	10	41	36	19	13
25 64 56 30 19 25 30 70 61 33 21 30 35 75 65 35 23 35 40 80 70 38 24 40 45 85 74 40 26 45 50 89 78 42 27 50 60 97 85 46 30 60 70 105 91 49 32 70 80 112 97 52 34 80 90 118 103 55 36 90 100 124 108 58 38 100 150 151 132 71 46 150 200 174 151 81 52 200 250 194 169 91 58 250 300 212 184 99 64 300 350 228 198 106 69	15	50	44	24	15
30 70 61 33 21 30 9 35 75 65 35 23 35 10 40 80 70 38 24 40 10 45 85 74 40 26 45 11 50 89 78 42 27 50 11 60 97 85 46 30 60 13 70 105 91 49 32 70 14 80 112 97 52 34 80 14 90 118 103 55 36 90 15 100 124 108 58 38 100 16 150 151 132 71 46 150 20 200 174 151 81 52 200 23 250 194 169 91 58 250 25 300 212 184 99 64 300 <td< td=""><td>20</td><td>57</td><td>50</td><td>27</td><td>18</td></td<>	20	57	50	27	18
35 75 65 35 23 35 100 40 80 70 38 24 40 107 45 85 74 40 26 45 113 50 89 78 42 27 50 119 60 97 85 46 30 60 130 70 105 91 49 32 70 140 80 112 97 52 34 80 149 90 118 103 55 36 90 158 100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99	25	64	56	30	19
40 80 70 38 24 40 107 45 85 74 40 26 45 113 50 89 78 42 27 50 119 60 97 85 46 30 60 130 70 105 91 49 32 70 140 80 112 97 52 34 80 149 90 118 103 55 36 90 158 100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73	30	70	61	33	21
45 85 74 40 26 45 113 50 89 78 42 27 50 119 60 97 85 46 30 60 130 70 105 91 49 32 70 140 80 112 97 52 34 80 149 90 118 103 55 36 90 158 100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77	35	75	65	35	23
50 89 78 42 27 50 119 60 97 85 46 30 60 130 70 105 91 49 32 70 140 80 112 97 52 34 80 149 90 118 103 55 36 90 158 100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 <td>40</td> <td>80</td> <td>70</td> <td>38</td> <td>24</td>	40	80	70	38	24
60 97 85 46 30 60 130 70 105 91 49 32 70 140 80 112 97 52 34 80 149 90 118 103 55 36 90 158 100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 397 700 320 278 149 <	45	85	74	40	26
70 105 91 49 32 70 140 80 112 97 52 34 80 149 90 118 103 55 36 90 158 100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 397 700 320 278	50	89	78	42	27
80 112 97 52 34 80 149 90 118 103 55 36 90 158 100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 <td>60</td> <td>97</td> <td>85</td> <td>46</td> <td>30</td>	60	97	85	46	30
90 118 103 55 36 90 158 100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 16	70	105	91	49	32
100 124 108 58 38 100 166 150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 <	80	112	97	52	34
150 151 132 71 46 150 202 200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 33	90	118	103	55	36
200 174 151 81 52 200 233 250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464	100	124	108	58	38
250 194 169 91 58 250 259 300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534	150	151	132	71	46
300 212 184 99 64 300 283 350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	200	174	151	81	52
350 228 198 106 69 350 305 400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	250	194	169	91	58
400 244 212 114 73 400 326 450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	300	212	184	99	64
450 258 224 120 77 450 345 500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	350	228	198	106	69
500 271 236 126 81 500 364 600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	400	244	212	114	73
600 297 258 138 89 600 397 700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	450	258	224	120	77
700 320 278 149 96 700 428 800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	500	271	236	126	81
800 341 297 159 102 800 457 900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	600	297	258	138	89
900 362 314 168 108 900 485 1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	700	320	278	149	96
1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	800	341	297	159	102
1000 381 331 177 114 1000 510 1500 464 403 215 138 1500 622 2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	900	362	314	168	108
2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800	1000		331	177	114
2000 534 464 248 159 2000 717 2500 596 518 276 177 2500 800					
2500 596 518 276 177 2500 800		534	464		159

99.00 percent of shots

will produce ground velocities less than 5.00 in/s at this distance.

	Distance (feet)										
Shot Size (lb)	Hard Rock	Wet Alluvium	Dry Alluvium	Sed Rock							
5	67	58	32	20							
10	94	81	44	28							
15	114	99	53	34							
20	131	114	61	40							
25	146	127	68	44							
30	159	138	74	48							
35	171	149	80	52							
40	183	159	85	55							
45	194	168	90	58							
50	204	177	95	61							
60	223	194	104	67							
70	240	209	112	72							
80	256	223	119	77							
90	271	236	126	81							
100	285	248	133	86							
150	348	302	162	104							
200	400	348	186	120							
250	446	388	207	133							
300	488	424	226	145							
350	526	457	244	157							
400	562	488	260	167							
450	595	517	276	177							
500	627	545	290	186							
600	686	596	317	203							
700	740	642	342	219							
800	790	686	365	234							
900	837	727	387	248							
1000	882	765	407	261							
1500	1077	935	496	318							
2000	1241	1077	571	366							
2500	1386	1202	638	408							
3000	1517	1316	697	446							

APPENDIX II - Chemical Effects of Seismic Detonations on the Environment

This appendix contains several items:

- 1. Letter from explosive manufacturer (DuPont de Nemours & Company, Wilmington, Delaware) stating the post-detonation products of the seismic charge we use. The chief products are water vapor (62.8%), nitrogen (20.46%), and carbon dioxide (9.7%).
- 2. Letter from explosive manufacturer (IRECO Incorporated, Salt Lake City, Utah) stating the fact that the seismic charge we use will not dissolve significantly in ground water.
- 3. Table from testing laboratory (Northern Testing Laboratories, Fairbanks, Alaska) showing results from testing water samples we collected in 3 Alaskan lakes before and after detonation of submerged seismic charges in them. The only significant change is an increase in total suspended solids following the detonations, which returns to normal in an estimated 2 weeks or so (see graph in #5 below). Following the detonation in one lake (Manley Lake), there is a slight increase in nitrate and decrease in dissolved oxygen, that may be due to the stirring up of mud from the bottom of the lake (increase in total suspended solids).
- 4. Results from testing by limnologist, Prof. Michael Miller, University of Cincinnati, for changes in various chemical species before and after a detonation submerged seismic charges in a 4th Alaskan Lake (Oly Lake). No significant changes were detected.
- 5. Graph of total suspended solids as a function of time following detonation of a submerged seismic charge in Oly Lake, Alaska.
- 6. First page of journal describing chemical effects of detonation of submerged seismic charges in East African Lakes. No changes in chemistry that exceed natural variations were found.

E. I. DU PONT DE NEMOURS & COMPANY

WILMINGTON, DELAWARE 19898

FABRICATED PRODUCTS DEPARTMENT

May 4, 1987

Ed Criley U.S. Geological Survey 345 Middlefield Road MS 977 Menlo Park, CA 94025

Dear Ed:

This is in response to your request for information on the post detonation products of Tovex® Extra Special marine watergel.

Ninety-seven percent of the post detonation products are gaseous, consisting of: water vapor (62.8%), nitrogen (20.46%), carbon dioxide (9.7%), hydrogen (2.4%), carbon monoxide (1.26%) and ammonia (0.38%). The remaining solids consist of sodium carbonate (2.8%), and sodium silicate (0.1%). Tovex® Extra Special marine watergels are formulated and oxygen balanced to detonate under confined borehole conditions without any additional source of oxygen necessary for complete detonation.

Tovex® Extra Special marine formulation watergel has been widely used for deep hole and submarine blasting approximately fifteen years.

Very truly yours,

Theodore I. Jerman Technical Specialist

TIJ/tjw I:ll

Eleventh Floor Crossroads Tower Salt Lake City, Utah USA 84144 Telephone: (801) 364-4800 Telex: 388353

6 May 1987

Mr. Ed Criley U.S. Geologic Survey M.S. 977 345 Middlefield Road Menlo Park, CA 90425

Dear Mr. Criley:

Emulsion blasting agents are inherently very water resistant. The continuous phase of the emulsion is oil, which surrounds each droplet of the aqueous phase (inorganic nitrate solution). Borehole water which comes in contact with the emulsion contacts only the continuous oil phase. The leaching of inorganic nitrates from the emulsion would therefore be minimal and would not present a significant pollution hazard.

We would expect that the detonation would consume 100% of the emulsion in the borehole and that the products of detonation (carbon dioxide, nitrogen and water) would not present a significant pollution hazard.

Bulk emulsion blasting agents are widely used throughout the world and I know of no instances where the groundwater has been contaminated by their use.

Very truly yours,

IRECO Incorporated

Herbert G. Knight, Ur.

Manager, Environmental Affairs

HGK/hbg

cc: S.R. Poulter

M.D. Lott

L.D. Lawrence

Northern Testing Laboratory (NTL), Inc., 600 University Plaza West, Suite A, Fairbanks, Alaska and 2506 Fairbanks Street, Anchorage, Alaska													
Client: U.S	. Geological Su	ırvey, 345 M	ı liddlefield Ro	ad, Menlo Park	, CA 94025		Attention: Gar	y Fuis					
	lity measureme						ıs			Date: 8/28/	1987		
	mbering Scher		70 A, B, C-1,			-							
Sample Nu	Imbering Schen	iie.	Example:	70 A, B, C-1,									
Shotpoint	# = 70	A = West	B = East	C = Center	1 = Before shot	2 = After shot							
Lake name	NTL Ids	Location	Sample Date	Total Suspended Solids (TSS)	Alkalinity	Hardness	Conductivity	Nitrate	рН	Dissolved Oxygen taken at 3 sites 0-100' apart			
		(Shotpoint)		mg/l	mg/l	mg/l		mg/l		mg/l			
Salcha		55 B-1	8/14/1987	4.8		27.0	720	0.72	n/a	n/a	n/a	n/a	
Salcha		55 B-2	8/21/1987	61.0		28.8	750		n/a	n/a	n/a	n/a	
Salcha	082887-20M	55 C-1	8/14/1987	6.8		27.8	730		n/a	n/a	n/a	n/a	
Salcha		55 CC-1	8/14/1987	8.0	30.9	27.8	790	1.2	n/a	n/a	n/a	n/a	
Salcha		55 C-2	8/21/1987	87.0		27.0	760		n/a	n/a	n/a	n/a	
Bonanza		70 A-1	8/22/1987	<1	36.5	40.3	880	< 0.1	6.86	8.60	8.90	8.80	
Bonanza		70 A-2	8/25/1987	115.0	36.5	39.4	880	0.2	6.76	8.00	8.30	n/a	
Bonanza		70 B-1	8/22/1987	2.8			890	<0.1	6.86	8.85	9.20	9.10	
Bonanza		70 B-2	8/25/1987	14.0		41.3	900		6.88	n/a	n/a	n/a	
Bonanza		70 C-1	8/22/1987	1.6			880	<0.1	7.00	n/a	n/a	n/a	
Bonanza		70 C-2	8/25/1987	4.8		40.3	880	<0.1	7.00	7.85	n/a	n/a	
Manley		74 A-1	8/23/1987	4.7	9.9	15.4	470	<0.1	6.04	8.40	8.20	8.65	
Manley		74 A-2	8/26/1987	221.0	13.3	16.3	550	0.55		n/a	n/a	4.15	
Manley		74 B-1	8/23/1987	<1 236.0			470	<0.1 0.79	6.235.84	n/a	n/a 4.60	n/a 6.80	
Manley		74 B-2	8/26/1987		14.4	17.3	560			n/a			
Manley		74 C-1	8/23/1987	1.0 265.0		15.4	460 550	<0.1	6.245.93	n/a	n/a	n/a	
Manley	082887-34M	74 C-2	8/26/1987	265.0	14.4	18.2	550	0.84	5.93	n/a	n/a	n/a	
Location	Latitude	min	Longitude	min	Elev. (m)								
Salcha	64	26.839		35.514									
Bonanza	66	36.115	150	59.185	224								
Manley	65	3.421	150	11.263	134								

Water quality changes in Oly lake (lat. 68° 44'N., long. 148° 55'W.), North Slope, Alaska. A shot of charge size 960 lbs. was detonated at midnight 7/8/88.

Species

Change in concentration (measured within 12 hrs. of the shot) in milligrams/liter

1. Dissolved oxygen

range: 0.3-1.7 mg/l
average change: 0.9 mg/l

2. Nitrogen as nitrate and nitrite 0.015 mg/1

3. Nitrogen as ammonia

0.040 mg/1

4. Phosphorus as phosphate

0.0033 mg/1

(changes were measured by Prof. Michael C. Miller, University of Cincinnati).

Changes in total suspended solids were measured in a time sequence over a 1 week period - see Figure on the following page.

Oly lake - suspended solids as a function

Journal of African
Earth Sciences

Journal of African Earth Sciences 48 (2007) 174-198

www.elsevier.com/locate/jafrearsci

Temporal geochemical variation in Ethiopian Lakes Shala, Arenguade, Awasa, and Beseka: Possible environmental impacts from underwater and borehole detonations

Simon L. Klemperer *, Michele D. Cash ¹

Department of Geophysics, Stanford University, Stanford, CA 94305-2215, USA

Received 5 August 2005; received in revised form 24 April 2006; accepted 6 August 2006 Available online 21 February 2007

Abstract

We present chemical analyses of 25 major, minor, and trace elements in 59 water samples from four lakes and five streams in central Ethiopia. Our major-element data extend to 2003 the intermittent series of measurements that reach back 40–65 years for Lakes Shala, Arenguade, Awasa, and Beseka within or adjacent to the Main Ethiopian Rift. Our minor-element and trace-element data help establish baselines for future monitoring of these four lakes.

Water chemistry was analyzed using samples taken in Lake Arenguade and Lake Shala both before and after detonation of submerged explosive charges as part of an active-source seismic survey of the Main Ethiopian Rift. Our data demonstrate no clear impact on the chemistry of Lake Shala from a 900-kg detonation suspended in the water column, whether from dispersal of the explosive charge in the body of water, or from mixing of the lake, or from stirring up of bottom mud into the lake water. In contrast, some changes in the chemistry of Lake Arenguade, most notably a decrease in Na and K concentration of 15–20% occurring between 1 and 11 days after detonation of a 1200-kg charge placed on the lake bottom, may possibly be ascribed to reaction between lake water and sediment stirred up by the detonation. However, these chemical changes that are potentially caused by our seismic detonation are significantly smaller than the natural variations in lake chemistry documented by long-term records. Additionally, we found no change in water chemistry of samples taken from Lakes Awasa and Beseka and from several streams both before and after nearby borehole detonations of 50–1775 kg.

Detonating explosive charges underwater greatly enhances seismic data quality. Bottom charges stir lake-bottom sediments into the water column, perhaps resulting in temporary changes in lake chemistry. Our borehole and suspended lake charges had no measurable chemical or lasting environmental effects. These 'negative' results – the lack of alteration of lake habitats consequent on seismic detonations – are a positive outcome.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Need for, and consequences of, underwater seismic detonations

Seismic survey design favors underwater detonations as being both cost-effective and energy-efficient (Kohler and Fuis, 1992; Jacob et al., 1994) because source coupling is an order of magnitude greater in water than in rock. The incompressibility of water allows for very efficient energy transfer from underwater shots compared to detonations in boreholes, which use much of their energy in fracturing rock. It is also cost-effective to shoot in lakes whenever possible because much of the cost of a field experiment is attributable to shot-hole drilling (Kohler and Fuis, 1992). This cost-efficiency is particularly significant for the very largest seismic controlled sources, which may therefore only be logistically feasible in lakes, e.g. a 5-tonne shot detonated in the Dead Sea, Israel (Gitterman and Shapira,

^{*} Corresponding author.

E-mail address: sklemp@stanford.edu (S.L. Klemperer).

¹ Present address: Department of Earth and Space Sciences, University of Washington, Seattle, WA 98105, USA.